Showing posts with label Respiratory System. Show all posts
Showing posts with label Respiratory System. Show all posts

Regulation of Respiratory System

.
The flow of air in and out of the lungs is controlled by the nervous system, which ensures that humans breathe in a regular pattern and at a regular rate. Breathing is carried out day and night by an unconscious process. It begins with a cluster of nerve cells in the brain stem called the respiratory center. These cells send simultaneous signals to the diaphragm and rib muscles, the muscles involved in inhalation. The diaphragm is a large, dome-shaped muscle that lies just under the lungs. When the diaphragm is stimulated by a nervous impulse, it flattens. The downward movement of the diaphragm expands the volume of the cavity that contains the lungs, the thoracic cavity. When the rib muscles are stimulated, they also contract, pulling the rib cage up and out like the handle of a pail. This movement also expands the thoracic cavity. The increased volume of the thoracic cavity causes air to rush into the lungs. The nervous stimulation is brief, and when it ceases, the diaphragm and rib muscles relax and exhalation occurs. Under normal conditions, the respiratory center emits signals 12 to 20 times a minute, causing a person to take 12 to 20 breaths a minute. Newborns breathe at a faster rate, about 30 to 50 breaths a minute.

The rhythm set by the respiratory center can be altered by conscious control. The breathing pattern changes when a person sings or whistles, for example. A person also can alter the breathing pattern by holding the breath. The cerebral cortex, the part of the brain involved in thinking, can send signals to the diaphragm and rib muscles that temporarily override the signals from the respiratory center. The ability to hold one’s breath has survival value. If a person encounters noxious fumes, for example, it is possible to avoid inhaling the fumes.

A person cannot hold the breath indefinitely, however. If exhalation does not occur, carbon dioxide accumulates in the blood, which, in turn, causes the blood to become more acidic. Increased acidity interferes with the action of enzymes, the specialized proteins that participate in virtually all biochemical reaction in the body. To prevent the blood from becoming too acidic, the blood is monitored by special receptors called chemoreceptors, located in the brainstem and in the blood vessels of the neck. If acid builds up in the blood, the chemoreceptors send nervous signals to the respiratory center, which overrides the signals from the cerebral cortex and causes a person to exhale and then resume breathing. These exhalations expel the carbon dioxide and bring the blood acid level back to normal.

A person can exert some degree of control over the amount of air inhaled, with some limitations. To prevent the lungs from bursting from overinflation, specialized cells in the lungs called stretch receptors measure the volume of air in the lungs. When the volume reaches an unsafe threshold, the stretch receptors send signals to the respiratory center, which shuts down the muscles of inhalation and halts the intake of air.

Structure of the Respiratory System

.
The organs of the respiratory system extend from the nose to the lungs and are divided into the upper and lower respiratory tracts. The upper respiratory tract consists of the nose and the pharynx, or throat. The lower respiratory tract includes the larynx, or voice box; the trachea, or windpipe, which splits into two main branches called bronchi; tiny branches of the bronchi called bronchioles; and the lungs, a pair of saclike, spongy organs. The nose, pharynx, larynx, trachea, bronchi, and bronchioles conduct air to and from the lungs. The lungs interact with the circulatory system to deliver oxygen and remove carbon dioxide.

A Nasal Passages
B Pharynx
C Larynx
D Trachea, Bronchi, and Bronchioles
E Alveoli

Respiratory System

.
Respiratory System, in anatomy and physiology, organs that deliver oxygen to the circulatory system for transport to all body cells. Oxygen is essential for cells, which use this vital substance to liberate the energy needed for cellular activities. In addition to supplying oxygen, the respiratory system aids in removing of carbon dioxide, preventing the lethal buildup of this waste product in body tissues. Day-in and day-out, without the prompt of conscious thought, the respiratory system carries out its life-sustaining activities. If the respiratory system’s tasks are interrupted for more than a few minutes, serious, irreversible damage to tissues occurs, followed by the failure of all body systems, and ultimately, death.

While the intake of oxygen and removal of carbon dioxide are the primary functions of the respiratory system, it plays other important roles in the body. The respiratory system helps regulate the balance of acid and base in tissues, a process crucial for the normal functioning of cells. It protects the body against disease-causing organisms and toxic substances inhaled with air. The respiratory system also houses the cells that detect smell, and assists in the production of sounds for speech.

The respiratory and circulatory systems work together to deliver oxygen to cells and remove carbon dioxide in a two-phase process called respiration. The first phase of respiration begins with breathing in, or inhalation. Inhalation brings air from outside the body into the lungs. Oxygen in the air moves from the lungs through blood vessels to the heart, which pumps the oxygen-rich blood to all parts of the body. Oxygen then moves from the bloodstream into cells, which completes the first phase of respiration. In the cells, oxygen is used in a separate energy-producing process called cellular respiration, which produces carbon dioxide as a byproduct. The second phase of respiration begins with the movement of carbon dioxide from the cells to the bloodstream. The bloodstream carries carbon dioxide to the heart, which pumps the carbon dioxide-laden blood to the lungs. In the lungs, breathing out, or exhalation, removes carbon dioxide from the body, thus completing the respiration cycle.

Topics:

Related topic: Respiratory Systems in Other Animals

Popular Posts